

How we create
the Judi Online websites

Designing and building data g g g
driven dynamic web

applications…
…the one web, domain driven, RESTful,

open, linked data way

Explore the domain

This should be clear from the business requirements It might be food or musicThis should be clear from the business requirements. It might be food or music
or gardening…
Employ a domain expert
G t th t k t h th i ldGet them to sketch their world
Sketch back at them
Model real (physical and metaphysical) ‘things’ not web pages - try to blank from (y y) g g y
your mind all thoughts of the resulting web site
Do this through the lifetime of the project as you refine your understanding

Identify your domain objects

As you chat and sketch with your domain expert you should build up a picture ofAs you chat and sketch with your domain expert you should build up a picture of
the types of things they’re concerned with
Make a list of these objects

Identify the relationships between your
domain objects
As your knowledge of the domain increases you’ll build up a picture of how yourAs your knowledge of the domain increases you ll build up a picture of how your
objects interlink
Sketch basic entity relationship diagrams with your domain expert
K k t hi til th i t lKeep sketching until the picture clears
The resulting domain model will inform the rest of your project and should be one
of the few ‘artifacts’ your project ever creates

Check your domain model with users

Run focus groupsRun focus groups
Speak to users - get them to sketch their understanding of the domain
Sketch back at them
Synthesise the expert model and the user model
User-centric design starts here - if you choose to model things and relationships
between those things that users can't easily comprehend no amount of g y
wireframes or personaes or storyboards will help you out

Check to see if your website already deals
with some of your domain objects
If it does then reuse this functionality by linking to these pagesIf it does then reuse this functionality by linking to these pages
You don’t want to mint new URIs for existing objects
Having more than one page per object confuses users and confuses Google
Think of your website as a coherent whole; not as a collection of individual
products
As ever, don’t expose your internal organisational structures through your y g g y
website. Users don’t care about departments or reporting lines

Design your database

Translate your domain model into a physical database schemaTranslate your domain model into a physical database schema

Source your data

Check if there are business systems in your organisation able to populate yourCheck if there are business systems in your organisation able to populate your
schema
Check if there are existing websites outside your organisation you can use to
populate your schemapopulate your schema
Give preferential treatment to any websites that offer their data under a liberal
licencing agreement - you can buy in data to help you slice and dice your own
data b t if o do this o might not be able to pro ide an open data API itho tdata but if you do this you might not be able to provide an open data API without
giving away the 3rd party’s business model
If your organisation AND an open data website can provide the data you need

id th d i i ti id tifi f d t ilconsider the danger in minting new identifiers for your own data - can you easily
link out / can you easily get links in?

Pipe in your data

Whether you choose to use your business data or buy data or use open dataWhether you choose to use your business data or buy data or use open data
you’ll need a way of piping it into your database schema
You’ll probably have to reshape it to make it suitable for publishing

Make your models

In an MVC framework your models should contain all your business logicIn an MVC framework your models should contain all your business logic
This mean they should capture all the constraints of your database schema plus
all the extra constraints of your domain model

Design your URI schema

This should follow naturally from your domain modelThis should follow naturally from your domain model
This isn’t just about designing URIs for resources you link to - sometimes your
pages will be made up of other transcluded resources - all of these subsidiary
resources should be addressable tooresources should be addressable too
By making every nugget of content addressable you allow other sites to link to it,
improve your bookmarkability and increase your SEO - cf. an individual ‘tweet’
Bear in mind that some representations (specifically mobile) will need smaller,
more fragmented representations with lower page weight - designing your
subsidiary resources to be addressable allows you to easily deal with this

i t t l d th t t d kt hi li k t it bilrequirement - transclude the content on a desktop machine, link to it on a mobile

The usual rant about persistence

It’s nice if URIs are human readableIt s nice if URIs are human readable
It’s also nice if they’re hackable
It’s an absolute prerequisite that they’re persistent
Don’t sacrifice persistence for the sake of prettiness or misguided SEO
URIs are your promise to the web and your users - if you change them or change
their meaning you break that promise - links break, bookmarks break, citations g y
break and your search engine juice is lost
* Cool URIs don’t change *

Make hello world pages for your primary
domain objects
For now all they need is an h1 with the title of the objectFor now all they need is an h1 with the title of the object

Make hello world pages for your primary
aggregations
For now all they need is an h1 with the title of the aggregation and a linked list ofFor now all they need is an h1 with the title of the aggregation and a linked list of
things aggregated

Define the data you need to build each of
your pages
For each URI define the data you need to build all representations of the objectFor each URI define the data you need to build all representations of the object
This should cover all the representations you intend to make- just because the
HTML representation doesn’t need to show the updated date doesn’t mean the
RSS or Atom or RDF don’t need itRSS or Atom or RDF don t need it
Some resources will transclude others. You don’t need to define the data
required for these - just reference the transcluded resource

Build up your HTML pages and other
representations
Now you know what data you need you can begin to surface this in yourNow you know what data you need you can begin to surface this in your
representations
If you’re working in HTML make sure you design your document to be
semantically correct and accessiblesemantically correct and accessible
Try not to think about page layout - that’s the job of CSS not HTML
In general your page should be structured into title, content, navigation - screen
readers don’t want to fight through calendar tables etc to get to the content

Add caching and search sitemaps

Knowing what can be cached and for how long is a vital part of designing yourKnowing what can be cached and for how long is a vital part of designing your
user experience
Cache for too long and pages go stale
D ’t h f l h d d t ffi th iDon’t cache for long enough and you send unnecessary traffic across the wires
and place extra strain on your application
Cached pages will also be faster and smoother to render in a browser
And if your users are paying for data on a mobile every extra connection means
bigger bills
An example: if you’re creating a schedule page for today’s TV you want to cache p y g p g y y
for performance reasons but you don’t want to cache it for too long since
schedules are subject to change. But you can cache yesterday’s schedule more
aggressively and last week’s schedule more aggressively still
Creating XML search sitemaps helps search engines know which bits of your site
have been updated. Which helps them to know which bits to re-index

Apply layout CSS

Add layout CSS to your HTML pagesAdd layout CSS to your HTML pages
Experiment with different layouts for your markup by moving elements around
the page

Test and iterate

You should be testing with real users at every stage of development but it’sYou should be testing with real users at every stage of development but it s
particularly important to conduct usability AND accessibility tests now
It’s like testing traditional wireframes but you’re testing on the real application
with real application behaviours and real data (no lorum ipsum)with real application behaviours and real data (no lorum ipsum)
Sometimes the results of your testing will require changes to layout CSS,
sometimes to markup, sometimes to the data you need to surface and
sometimes to the nderl ing domain / data modelsometimes to the underlying domain / data model
Bear in mind if you’re using data from existing business systems there may need
to be heavy investment to make changes to that data model and employ the staff
t d i th hto admin those changes
Occasionally it might even mean renegotiating contracts with outside data
providers - all design and usability issues are fixable - some just need more
l h h)lawyers than others :)

Apply décor CSS

Over the top of your wireframe application you can now start to add visual designOver the top of your wireframe application you can now start to add visual design
and branding
This is exactly the same process as taking a paper wireframe and applying
design treatments over the top except you’re mainly working in CSSdesign treatments over the top except you re mainly working in CSS
Experiment with different treatments - see how far you can stretch the design
with the markup given
Sometimes you’ll need to add additional markup to hook your CSS off
Now’s the time to add background imagery for headers, dividers, buttons, list
items etc so best to open Photoshop / Illustrator to make your design assets

And test and iterate

Never stop testingNever stop testing
Remember that personas are just abstractions of people - it’s always better to
use real people
Id ll h ld b bl t dj t d / k / CSS t d tIdeally you should be able to adjust your code / markup / CSS to respond to user
requests
If you can afford the recruitment / developer time there’s no better way to test
than with a user sitting alongside a developer - the developer can react to user
requests, tweak the application and gain instant feedback without the ambiguity
that sometimes comes from test reports
Again you should accessibility test - some of the design / décor changes may
affect font sizes etc - make sure your users can still read the page

Add any JavaScript / AJAX

By designing your browsable site first and adding in Javascript / AJAX over theBy designing your browsable site first and adding in Javascript / AJAX over the
top you stand a better chance of making an accessible web site - one that
degrades gracefully
As ever Google et al are your least able users search bots don’t like forms orAs ever Google et al are your least able users - search bots don t like forms or
JavaScript - sites that degrade well for accessibility also degrade well for search
engines
Making e er s bsidiar reso rce addressable and pro iding these reso rcesMaking every subsidiary resource addressable and providing these resources
serialised as XML or JSON makes adding AJAX relatively trivial
You’ll probably need to tweak your CSS to adjust to life with JavaScript / AJAX

And test and iterate

Again test your site for accessibility and usability with JavaScript turned on andAgain test your site for accessibility and usability with JavaScript turned on and
off

Continue

Follow the same steps for each development cycleFollow the same steps for each development cycle
Some development cycles will just be about surfacing new views of the existing
domain model; some will require expanding your domain model
N k d i d l d h d h d i bj tNow you know your domain model and have made each domain object
addressable layering over new views and more subtle user journeys should be
trivial
And keep testing!

